Enabling advanced applications with RapidIO

Date: November 2013, RTA Global Design Summit Asia
Contents

1. Introduction

2. High performance applications

3. RapidIO building blocks

4. A broader perspective

5. RapidIO system software
Quick Fact Sheet

- Private owned company, established in 1993
- Sales 2012: €77 Million, Est. 2013: €100 Million
- Employees:
 - 470 FTE of which 250 in development
 - 80% higher education (Bsc, Msc, PhD)
- Core Business:
 - Design of electronics, software and mechanics
 - Manufacturing
 - Added Value Services
- Business Model:
 - Off-the-shelf products
 - Technology solutions
 - Manufacturing services
- Headquarters: Son, The Netherlands
 - Sales office Germany
 - Branch office Hong Kong

Employees (FTE)
High performance applications (1/3)

• Application: motion control
 ▪ Move heavy mass in 6 DoF with nanometer accuracy

• Execution platform
 ▪ Heterogeneous, modular environment
 ○ Multi-core, multi-processor
 ○ FPGA
 ▪ Real-time Linux based

• Focus
 ▪ Low latency
 ▪ Reliability
 ▪ Determinism
High performance applications (2/3)

• Application: server & storage
 ▪ Scalable infrastructure for e.g. big data, microserver, ...

• Execution platform
 ▪ Vendor, architecture and OS agnostic!
 ▪ 1U stacked ATX based boxes and ToR switching
 ○ Multi-core, multi-processor
 ○ Multi-tier network infrastructure

• Focus
 ▪ Throughput
 ▪ Performance per m³
 ▪ Cost of goods
High performance applications (3/3)

• Application: high performance computing
 ▪ Scalable infrastructure for scientific applications

• Execution platform
 ▪ Linux based software platform
 ▪ Heterogeneous, modular environment
 o Multi-core, multi-processor, multi-architecture
 o Multi-tier network infrastructure

• Focus
 ▪ Balanced compute, IO and memory
 o Work partitioning in hardware
 o Network clustering and utilization
RapidIO building blocks (1/2)

Processing

2012

PowerPC e5500 (Freescale QORIQ P5020)

PowerPC e500mc (Freescale QORIQ P4080)

PowerPC e500v2 (Freescale MPC8548)

Custom FPGA (Altera Stratix-II GX)

2014

ARM A15 + DSP C66x (TI Keystone)

Open Modular Server

ARM + DSP + FPGA (TI, Xilinx)

Core i7 + PCIe to SRIO bridge (Intel, IDT)

>2016

Multi-purpose FPGA (Xilinx Virtex-7)
RapidIO building blocks (2/2)

Switching

- Carrier blade 160G1 (10Gbps SRIO, 1Gbps Ethernet)
- Switch blade 320G1 (20Gbps SRIO, 1Gbps Ethernet)
- Switch blade 560G1 (20Gbps SRIO, 1Gbps Ethernet)
- Carrier blade 320G10 (20Gbps SRIO, 10GbE)
- Carrier blade 560G10 (20Gbps SRIO, 10GbE)
- Carrier 10xN (40Gbps SRI0)
- Break-out AMC 40G10

ATCA blade
19” rack mount
Research

Template PN: 6001-1246-5503 | Template date: 10-05-2013
www.prodrive.nl
Reference: P1310245681R02
Slide 8 of 15
A broader perspective (1/2)

• Technology becomes more and more complex
 ▪ Spatial volume of technology decreases
 ▪ More effort needed to manage complexity
 ▪ Higher level of service for ODMs

• Customers focus on application software
 ▪ More utilization of COTS hardware
 ▪ More re-use of low level software stacks
 ▪ Reluctant to introduce disruptive technology
A broader perspective (2/2)

- Enable RapidIO technology through familiar APIs
 - Lower the threshold for RapidIO design-in
 - Shorter time-to-market
- Motion control application: Network management
- Server & storage application: RDMA
- Scientific computing application: OpenMPI
RapidIO control & data plane software

- Control plane: tools & APIs for network management
- Data plane: high performance APIs (RDMA, MPI, ...)

The Seven Layers of OSI
RapidIO control plane software

- Based on mainline Linux
- Discovery/enumeration
 - Automatic or manual
- Routing
 - Automatic or manual
- Hot plug support
- Award-winning network analysis tools
RapidIO data plane software

• Based on mainline Linux
• Networking paradigms
 ▪ Connection oriented
 ▪ Connectionless
 ▪ Broadcast
• APIs
 ▪ POSIX-like sockets
 ▪ OpenMPI
 ▪ RDMA
• Open interfaces
Open source developments

• Development of Linux SDK
 ▪ Added value for customers
 o Documentation
 o Example code
 ▪ Linux product BSP to mainline
 o Better integration with commercial Linux distributions

• RapidIO software to mainline
 ▪ Close cooperation with IDT
 ▪ Prodrive takes on leading role in Linux RapidIO

• http://git.prodrive.nl