
 White Paper

RapidIO Technology Solves the
Communications Fabric Conundrum

The communications fabric silicon market is substantial – IDC projects that this market was $322M in
2003 and is expected to grow at a sturdy 9.5% Compound Annual Growth Rate (CAGR) through 2007.
The Linley Group estimates that over 83% of this market is served by proprietary, in-house solutions.
Switch fabrics represent the last major bastion of proprietary silicon in networking equipment, but recent
dynamics are disrupting the status quo. Networking equipment companies have emerged from the recent
industry downturn with smaller design staffs and a greater willingness to outsource activities that do not
provide competitive differentiation. Merchant fabric silicon continues to mature and now competes
favorably with in-house fabric solutions. These merchant fabric silicon vendors are also steadily turning
away from proprietary backplane protocols and toward open standards. This last dynamic allows fabric
silicon providers to better deliver on their presumed value proposition: lower technical and business risk
due to outsourcing, the proliferation of end-points with integrated fabric interfaces, and economic
leverage reaped from volume markets.

While business conditions are influencing equipment vendors to consider adopting an open standard
fabric, multiple different technologies are vying to be the fabric technology of choice for networking and
communications. The contenders include RapidIO interconnect, Advanced Switching Interconnect (ASI),
Ethernet, and HyperTransport™. The proliferation of contenders has created something of a crisis in the
embedded industry. OEMs can no longer afford to invest in proprietary fabrics, but until a clear winner
emerges, the choice of an open fabric can seem risky. To be sure, this is a decision in which an OEM is
betting their company’s future. They absolutely cannot afford to be wrong.

In responding to these market developments, the RapidIO Trade Association has been extending the
capabilities of the RapidIO architecture to enable it to serve as a fully functional, open communications
fabric, replacing proprietary fabrics that dominate the communications space today.

Point-to-Point Connections vs. Communications Fabric

There is quite a bit of confusion surrounding the term fabric. In truth, many of the technologies that are
touting themselves as fabric solutions are little more than simple serial interconnects with few of the
features that are required by the demanding fabric applications of today.

To put it simply, an interconnect provides a means for exchanging data between a sender and a receiver.
i2C is an interconnect. Processor buses and peripheral buses like PCI are interconnects. Recently, the term
interconnect has evolved to also include a new generation of high-speed serial buses that provide point-
to-point connectivity between processor and peripheral devices. HyperTransport 2.0, for example,
continues to maintain a processor bus focus even after adopting a higher speed physical layer. Similarly,
PCI Express strictly adheres to PCI’s host/peripheral load store DMA-based architecture on top of a
serial physical and link layer. PCI Express is just a serial version of PCI, which, even with its serial
physical layer, lacks basic features that are present in modern communications fabrics: source directed
routing, a message passing protocol, classes of service, multicast, topological flexibility and much more.

A communications fabric must be able to function as a simple point-to-point interconnect and also scale to
handle thousands of nodes. The term fabric derives its name from its topological representation. As the
data paths between the nodes of a fabric are drawn out, the lines cross so densely that the topology map
is analogous to a cloth. Figure 1 shows the breadth of application of a communications fabric.

Figure 1: Communications Fabric Use – Chip-to-Chip through Chassis-to-Chassis Support

Fabric architectures are used in many different market segments. To date, the architectural requirements
for fabrics have been so demanding that equipment vendors have passed over commercially available
technologies like PCI and Ethernet in favor of their own proprietary solutions. This has been the case for
fabrics in both the high-end embedded computing and communications markets. While compute fabrics
have begun to migrate to open standards, communications fabrics have resisted.

RapidIO Is the Embedded Fabric of Choice

There are a large cast of interconnect standards on the market today, but few even begin to address the
requirements of an open communications fabric. In fact, the RapidIO standard is the only one that is
mature and scaling to specifically address the full requirements of the communications fabric space. The
new capabilities are seamlessly added into the elegant framework of the RapidIO specification
architecture:

o Flow Control Logical Layer Extensions Specification
o Data Streaming Logical Layer Extension Specifications

-Interworking/Encapsulation
-Traffic Management

o Multicast Extensions Specifications
o Serial Physical Layer Specification
o Next Generation Physical Layer Specifications

Due to the RapidIO standard’s modular and extensible architecture, these new specifications are
designed to be fully interoperable with other parts of the RapidIO standard. Further, all of these new
features may be adopted individually or not at all. Figure 2 shows the RapidIO layered architecture.

- 2 -

Figure 2: RapidIO Architecture Layers and Associated Specifications

The RapidIO Serial Physical Layer was ratified in late 2001. In September of 2003, the RapidIO Trade
Association released a logical layer extension that added Flow Control functionality to the base
specification. Flow control provides congestion control for medium-utilization data plane applications
using the RapidIO interconnect architecture. The flow control extensions were driven by OEMs who were
beginning to see a role for the RapidIO interconnect in wireless infrastructure, media gateways and other
access equipment.

The other significant additions that enables system vendors to take full advantage of the RapidIO
interconnect as a communications fabric is the Data Streaming logical layer specification and the Multicast
specification. The Data Streaming logical layer consists of two parts: Phase I delivers the Interworking
specification and Phase II will deliver the Traffic Management specification. Phase I was released in
August of 2004. The Multicast extensions specification provides a defined mechanism to use RapidIO
device IDs to serve as multicast group identifiers allowing switches to elaborate packets to any set of one
or more of their output ports. The elegance of device ID-based routing, as opposed to other schemes like
path-based routing, is that a single routing architecture can be used for both unicast and multicast traffic.

The RapidIO Trade Association will also continue to leverage the physical layer standards established by
the communication infrastructure ecosystem such as those being defined in the Optical Internetworking
Forum (OIF). This will scale RapidIO serial physical links to OC-192 rates and beyond. The RapidIO
architecture has no inherent limitations preventing it from scaling indefinitely into the future following
the industry requirements. The Physical Layer specifications will not only scale in speed, but also in their
feature set as they evolve to meet the needs of demanding, high-performance embedded computing
applications.

- 3 -

How RapidIO Technology Meets the Requirements of a Communications Fabric

In identifying the requirements of the RapidIO architecture as an open standard fabric, the RapidIO
Trade Association examined what features were needed that would provide more extensive technical
benefits than the proprietary solutions in production today, plus provide the benefits of an open
standard. These features included:

o Architectural independence
o Carrier grade
o Advanced traffic management
o High performance
o Scalability
o The right ecosystem

These fabric features – and how the RapidIO architecture in general and the new extensions specifically
address them – are discussed in the following sections.

Fabric Requirement #1: Architectural Independence
A fabric must not be tied to a particular hardware or software architecture. Ethernet is an example of a
technology with a high-level of software dependence. An application generally cannot access an Ethernet
packet without running a networking stack. This often requires the addition of a processor – not an issue
when the end-point node is a desktop PC, but in embedded applications, additional processors raise
system cost. Similarly, some architectures intrinsically suffer from a high-level of hardware architecture
dependency. For example, transmitting an architecturally independent entity (like a packet/cell/frame)
over an architecturally dependent memory mapped bus (that uses a common address space for all
devices) runs counter to the natural forward evolution of communications architectures.

A communications fabric must also support direct peer-to-peer transactions and not be tied to a
particular network topology (such as dual-star, mesh, ring, daisy-chain, or tree). In particular,
interconnects that function in a tree topology force all transactions to flow through a common switch or
CPU complex, which is not optimal for a fabric. A fabric must also support the spectrum of chip-to-chip,
board-to-board, mezzanine, backplane and chassis-to-chassis mechanical standards.

Architectural independence also means that a fabric should be protocol agnostic. In the past, there was a
belief that communications applications would converge around a single protocol. In reality, convergence
has meant that OEMs are forced to support many protocols within a single system design: Ethernet/
Point-to-Point Protocol (PPP), UTOPIA/ATM, Packet over SONET (PoS), CSIX, and so on. A fabric has to
provide the semantics to support the encapsulation, transformation and transport of all major networking
protocols. This starts with heterogeneous traffic support but also includes support for both variable and
fixed-size payloads, segmentation and reassembly (SARing) of large Protocol Data Units (PDUs), and
multicast traffic.

Finally, a fabric must have a simple and clean separation between its physical, transport and logical
layers. It must be easily extendible so that new features can be added without breaking the integrity of
the original architecture. In particular, a fabric must be easily adaptable to parallel and serial physical
layer architectures, as well as different physical mediums: copper traces, optical cable or whatever the
application requires.

RapidIO technology was designed to be flexible and agnostic in terms of network architectures and
protocol support. In addition, the layered RapidIO architecture is extensible and adaptable, enabling new
features and physical layer technologies to be implemented without disrupting the integrity of the
architecture. The following table describes how the new extensions in particular support the RapidIO
value-proposition of architectural independence for communications applications.

- 4 -

RapidIO Extensions Addressing “Architectural Independence”

Transport Very Large and
Very Small Protocol Data
Unit (PDU) Sizes

The Data Streaming specification extends the maximum PDU size supported by
the RapidIO fabric to match that of the ubiquitous IP protocol: 64kB. Equally
important, is the RapidIO architecture’s ability to work with small PDUs: 32
bytes. For those who have designed latency-sensitive systems, the requirement
for a small PDU is clear. When large packets are used, it may take so long to fill
up the payload with real data that the data expires before it is sent.

An alternative is to send a packet partly empty, but this compromise degrades
fabric efficiency. This is one of the challenges facing designers who implement
VoIP, which has a minimum packet size of 64 bytes encapsulated in a relatively
large IP and Ethernet header. While a single Ethernet interface may have plenty of
bandwidth for a single point-to-point VoIP flow, the fabric system architect has to
consider the aggregation of millions of these flows and how payload inefficiency
affects network utilization deeper in the network.

Support for a Maximum
Transfer Unit (MTU) Size

Large PDUs can require a long time to send over a fabric link. This is especially a
problem if smaller packets are blocked behind a large packet. The ATM standard
created a fixed 53-byte cell precisely to avoid this and other problems associated
with variable sized packets. Modern fabrics need to be able to divide large PDUs
into segments and reassemble them when necessary.

The Data Streaming Logical Layer supports SARing using an application defined
segment, or MTU, size. The segment size is 32 bytes to 256 bytes (in increments of
4 bytes) and may be configured on a per-end-point basis if required by the
application. This flexibility allows the application, by convention, to determine
whether the fabric will transmit variable or fixed length packets. The RapidIO
architecture allows the application to assign a specific ID to each segmentation.
This ID, or segmentation context, allows a destination end-point to separate
incoming flows of different PDU segments.

The maximum size of 256 bytes was chosen because this is the point at which the
protocol reaches peak efficiency. Transferring more would only add the burden of
larger packet buffers, more bits spent on error coverage, and longer periods of
fabric blocking in the case of mixed sized traffic.

Low Overhead Segmented PDUs are transmitted using a start, continuation and end packet logical
protocol. There is a maximum of one start and one end segment, but possibly
many continuation segments. For this reason, the architects of the Data Streaming
standard took special care to minimize the header overhead of the continuation
segment. The header of the continuation segment is only 20-bits in length. This
competes favorably with other interconnect protocols in terms of maximizing
useful throughput and minimizing overhead.

Support for
Encapsulation and
Interworking

The Data Streaming Logical Layer provides an architectural framework that
supports both encapsulation and transformation of common networking
protocols like CSIX, Ethernet, UTOPIA-2/3, SPI-3/PL-3, SPI-4, and so on. The
RapidIO architecture is protocol agnostic. The payload has no inherent semantic.
This allows the system designer flexibility in locating protocol specific support
either intrinsically in the fabric or at the edge of the fabric in end-points.

- 5 -

Fabric Requirement #2: Carrier Grade
A fabric must be reliable and robust. It must support performance management features, which allow a
fabric manager (typically a host processor) to investigate and monitor the status of the fabric. The fabric
must contain semantics for event notification and handling. The fabric must support common fault
management scenarios such as failure detection, hot swap, redundancy and fault tolerance. Service
providers typically have stringent requirements pertaining to planned and unplanned maintenance and
these restrictions must be explicitly supported in the fabric architecture around which the system is
designed.

RapidIO technology embodies the notion of reliability. It supports robust error detection with hardware-
based recovery mechanisms. At the physical layer, each packet is explicitly acknowledged on a link-by-
link basis. Packets are covered end to end with a Cyclic Redundancy Check (CRC). None of the bits
covered under this CRC are changed thus making it invariant across the system. The RapidIO
interconnect has a hardware-based recovery mechanism, which attempts to retransmit a bad packet or
resynchronize a link that is out of sequence. Even when a link is idle it is always sending link status
information. This means that failure of a link is immediately detected and corrective action taken even
when idle.

In addition, the RapidIO architecture supports hot-swap and redundant links. Multiple host system
discovery and maintenance can be done using in-band maintenance transactions. This allows system
implementers to have redundancy in their fabric maintenance. The RapidIO standard defines an error
management programming model (including error logging registers, error threshold counters, and so)
that allows software implementers to be able to rely on uniformity of specific error reporting registers
across endpoints and switches.

Fabric Requirement #3: Advanced Traffic Management
A fabric must be able to support Classes of Service (CoS). Traffic classes have unique requirements: some
classes are sensitive to latency (voice and video), some classes are bursty (data), other classes have
minimum or maximum throughput profiles (service level agreements). A fabric architecture must
support 256 classes in order to capture the full semantic of the class fields of common networking
protocols (IPv4 Type_of_Service, IPv6 Traffic_Class, CSIX Class, etc). Interconnect architectures that do
not support 256 classes, may be quickly outgrown as protocols like IP continue to evolve new uses for
their traffic class semantics.

Additionally, a fabric must support millions of flows. Flows can be used for a number of important
purposes; they can represent anything from PHYs to traffic types to individual users. Modern systems
have many PHYs. For example, UTOPIA extended addressing provides support for up to 124 unique
MPHYs per port. In a multi-slot system, this could mean supporting several hundreds or even thousands
of MPHYs. The fabric architecture needs to support the concept of PHY identification without burdening
these relatively simple devices with the overhead of full end-point address support. The inability for an
interconnect architecture to separate traffic into flows would prevent it from supporting the policing and
shaping operations that a fabric switch must perform in order to provide intelligent non-blocking
support. Further, flow-based management of traffic is required in order to support graceful degradation
when a fabric becomes congested.

- 6 -

Lastly, a fabric must support end-to-end flow control. Traffic sources can, for example, send a large
overwhelming burst of traffic to a PHY. In this canonical case, traffic can back-up within the various
buffers and FIFOs within the fabric, and block critical pathways. A typical solution is for the PHY to send
flow control messages to traffic sources before PHY resources are completely allocated. This signals
transmitting devices to refrain from sending more traffic. Ethernet, for example, has no flow-based flow
control semantic, so an Ethernet device has no way to receive notification of congestion within the fabric
until the fabric blocks and a link-level flow control is issued. This may be one of the main reasons why
Ethernet, despite its unparalleled success as a networking technology, has never been more than a niche
player in the fabric market.

Figure 3 summarizes how a simple message passing architecture can achieve a roughly 50% utilization
rate of a link. Some implementations rely on over-provisioning (provisioning for peak bandwidth) to
compensate for a lack of traffic management support. While this is acceptable in some applications,
others want to squeeze every last bit of efficiency out of their network. Flow control for a small number
of traffic classes can increase efficiency above 50%. To achieve 90% utilization of the network, the fabric
must add advanced traffic management features like end-to-end, flow-based and class-based flow control
and hundreds of traffic classes and thousands of flows.

Figure 3: Getting the Most out of the Fabric

- 7 -

The following table defines the traffic management capabilities of the new extensions.

RapidIO Extensions Addressing “Traffic Management”

Support Classes of
Service

Data plane architectures classify PDUs into traffic classes that have distinct
transport requirements. Some classes are sensitive to latency like voice or video.
Other classes can be bursty like data traffic, for example. In other examples,
service providers may want to establish a service agreement whereby subscribers
pay for differing levels of service. The fabric has to be able to police and shape
traffic to conform to the desired requirements.

Low-end access equipment, such as DSLAMs, are beginning to handle many
traffic types (data, video, gaming, and so on) and in some cases are requesting
that fabrics be able to shape 32 or more traffic classes. Applications that do not
need that many classes today, may still prefer to choose an architecture that
provides room to grow. One thing is certain when discussing next generation
communications architectures, demand for traffic class support is likely to only
increase – never decrease.

As mentioned earlier, the CSIX protocol as well as IPv4/IPv6 contain protocol
specific fields in their headers for 256 distinct traffic classes. The Data Streaming
Logical Layer is able to transport these class values without losing information in
its 8-bit Class field.

Provide Millions of Flows A Stream is defined as a persistent relationship between unique source and
destination devices. This relationship is application specific or even device
specific. In practice, a stream may have specific traffic management requirements
or be associated with a specific flow such as transmission to/from a PHY. The
Data Streaming Logical Layer allows 64k streams to be defined between any
source and destination pair. This effectively allows the fabric to represent millions
of unique streams.

Apart from traffic classes, streams are the fundamental unit of traffic management
within the new extensions. They allow the fabric to manage congestion by
separating the mass of flowing PDUs into thousands or perhaps millions of
individual flows with specific priorities, latency requirements and throughput
requirements. Streams allow a fabric to manage congestion intelligently by
viewing traffic as a series of flows that can be policed and shaped according to
any desired heuristic.

Enable End-to-end Flow
Control

One basic mechanism that allows the fabric to avoid blocking is flow control.
When fabric resources start to become oversubscribed, the fabric may issue flow
control messages to traffic sources telling them to stop transmitting certain
streams. Lower priority flows are signaled first. When fabric resources become
available, flow control messages are sent to stopped flows to restart them.

- 8 -

Fabric Requirement #4: High Performance
Advanced traffic management features directly contribute to fabric performance. Traffic management
can prevent a burst of packets from causing a fabric to block. This is critical to maintaining performance.
Traffic management can also enforce performance guarantees for specific classes or flows.

Low-end fabrics that run without the benefit of flow control or traffic management features rely on brute-
force over-provisioning. In other words, the fabric provides enough bandwidth to meet the peek
requirements of the application. However, throughput isn’t everything. Fabric switches must also
control latency. This is critical for voice applications that have to deliver real-time data. Further, fabric
architects pay a great deal of attention to the ratio of header to payload. For example, the overhead
represented by Ethernet’s MAC layer, the IP network layer, and the TCP transport layer represents a
minimum of 86 bytes of “wrapper” around the data payload. Control plane traffic tends to consist of
short data transfers. These small transfers are heavily penalized by the protocol overhead. You can be
sure that service providers study this issue quite seriously – bill-able bits are their business. Every bit that
is wasted on header or overhead is rightfully considered a lost revenue opportunity. As mentioned
earlier, the Data Streaming logical layer has a deliberately compact header: 36 bits for the start and end
segments and 20 bits for the continuation segment. When SAR’ing large PDUs, the continuation segment
is reused so that efficiency increases as the PDU size increases.

RapidIO technology was also designed to provide ample bandwidth for fabric-quality forwarding. The
RapidIO serial physical layer is based upon the XAUI (10 Gigabit Ethernet Attachment Unit Interface)
specification. Serial RapidIO, runs at 3.125 Gbaud today, 25% faster than the 2.5 Gbaud clock supported
by PCI Express and ASI and over three times faster than a Gigabit Ethernet interface.

Fabric Requirement #5: Scalability
Scalability is related to performance, but it is broader. A fabric must be able to scale in the throughput
domain: from very low-cost, low-power applications all the way up to very high-end, high-throughput
systems. The Serial RapidIO physical layer supports three speeds: 1.25GHz, 2.5 GHz and 3.125 GHz.
Engineers intuitively understand that higher speed clocks imply higher power consumption. RapidIO
technology is unique in allowing the user to scale the speed of the physical layer to support power
sensitive applications. To gain additional performance, at the high-end, using existing SerDes technology,
serial lanes are combined to create a by-N port, often called striping. RapidIO technology supports a 4-
lane or 10Gbps (after 8/10 encoding) link.

Fabrics must also support thousands of end-points in order to scale to the needs of high-end applications.
Many years ago, when Ethernet battled Token Ring, there was much discussion surrounding device-
based routing (the Ethernet MAC) versus Token Ring’s path-based routing scheme. Obviously, Ethernet
won the battle and the war. Architectures that use path-based routing may contend with some of the
same issues that determined Token Ring’s destiny at that time.

In path-based routing, end-points must maintain a real-time database of the entire topological map of the
fabric. Multicast can be tricky to implement. Also, hot swap events which change the topology can result
in a control plane storm to all end-points. Device-based routing is much more straightforward. A change
in topology requires updates only to the nearest neighbors of the device that is changing. Further,
multicast is easily implemented with bit masks that are associated with a particular destination device id.

Device-based routing simplifies end-points and switches. There are up to 64k RapidIO devices in a fabric.
The switch often maintains a simple look-up table associating each destination ID with one or more ports.
Worst case latency is, of course, implementation dependent, but RapidIO switches can forward a unicast
packet in as little as a few hundred nanoseconds.

- 9 -

- 10 -

Fabric Requirement #6: The Right Ecosystem
One common myth is that embedded and communications systems design with the same parts as
commercial desktops, laptops and servers. In fact, quite the opposite is true. If one were to compare the
bills of materials of a commercial desktop PC with a CompactPCI motherboard, for example, the two
would share very few actual components. The reason is that the embedded and communications markets
have specific non-negotiable needs: long product life cycles, industrial qualification and reliability, and
industrial temperature ranges. Solutions that are targeted at the commercial markets categorically do not
address these requirements. Technologies from commercial computing may be used in embedded
computing, but for the most part, the actual parts used are manufactured specifically for embedded
customers. It is not enough to have any ecosystem, even if it is large. A technology has to have the right
ecosystem. This means support from the broad community of vendors who are focused on the unique
needs of the embedded systems market.

The RapidIO Trade Association comprises some of the leading system OEMs, silicon manufacturers, and
software vendors in embedded computing and communications. These vendors are leading the charge
with the RapidIO ecosystem. Processors, switches, boards and systems, FPGAs, and ASIC devices are
available with RapidIO technology today, and several companies have shipped in production volumes.

Conclusion

The fabric market is dominated by proprietary solutions, but as merchant switch fabric suppliers turn to
open fabric standards, they are likely to increase their market penetration. Ethernet has been available for
many years, but has not achieved critical mass due to its lack of features like flow/class-based flow
control and its high software architecture dependence. HyperTransport is an interconnect standard that
focuses its value proposition on being a processor bus. PCI Express lacks class of service, peer-to-peer
transaction support and architectural independence. ASI is targeted more for low-end backplanes,
lacking architectural support for traffic management, which will prevent it from scaling to high-end
fabrics. ASI is in truth more of a switched interconnect than a true fabric.

The RapidIO architecture presents a strong value proposition in seeking to win the backplanes and
fabrics of future communications equipment. With the help of the new extensions, RapidIO technology
can scale from very cost/power sensitive low-end local bus applications to high-performance fabrics. The
new specifications add features that modern fabrics require including interworking, traffic management
and multicast support. In addition, the new specifications solidify the RapidIO architecture’s position as
the premier open-standard interconnect and fabric for embedded and communications applications.

RAPIDFABRICWP, September 2005
RapidIO is a registered trademark of the RapidIO Trade Association.

	Point-to-Point Connections vs. Communications Fabric
	RapidIO Is the Embedded Fabric of Choice
	How RapidIO Technology Meets the Requirements of a Communica
	Fabric Requirement #1: Architectural Independence
	Fabric Requirement #2: Carrier Grade
	Fabric Requirement #3: Advanced Traffic Management
	Fabric Requirement #4: High Performance
	Fabric Requirement #5: Scalability
	Fabric Requirement #6: The Right Ecosystem

	Conclusion

