<table>
<thead>
<tr>
<th>Time</th>
<th>Session Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 am</td>
<td>Registration</td>
</tr>
<tr>
<td>10:00 am</td>
<td>RTA: RapidIO Intro, 10xN Specification launch and DCCN update</td>
</tr>
<tr>
<td>10:45 am</td>
<td>Freescale Solutions with RapidIO</td>
</tr>
<tr>
<td>11:15 am</td>
<td>Fabric Embedded Tools Software for RapidIO Networks</td>
</tr>
<tr>
<td>11:45 am</td>
<td>Technical Demo</td>
</tr>
<tr>
<td>12:15 pm</td>
<td>Lunch</td>
</tr>
<tr>
<td>1:30 pm</td>
<td>Prodrive: Enabling Advanced Applications with RapidIO</td>
</tr>
<tr>
<td>2:00 pm</td>
<td>IDT: RapidIO for Low Latency Servers and Wireless Base Station</td>
</tr>
<tr>
<td>2:30 pm</td>
<td>Break</td>
</tr>
<tr>
<td>2:45 pm</td>
<td>Mobiveil: Designing SOC/FPGA with S-RIO Interface</td>
</tr>
<tr>
<td>3:15 pm</td>
<td>Texas Instruments Multi-core Processors with RapidIO</td>
</tr>
<tr>
<td>3:45 pm</td>
<td>Wrap-up and Networking</td>
</tr>
</tbody>
</table>
RTA Presentation Agenda

- RapidIO Intro
- Ecosystem and Protocol Attributes
- RapidIO 10xN Specification Overview
- RapidIO Data Center Compute and Networking Update
- RapidIO in SDN/Openflow
RapidIO’s Value Proposition

- A Multi-Processor Embedded Interconnect
- A **Disruptive Architecture**, that changes the basic economics of deployment in all multi-processor applications
- A **Mature** technology – 10 years of market deployments
- Designed for the unique requirements of **embedded processing and communications systems**
- A **scalable** solutions for board, backplane and inter-chassis communication
- Offers **lowest overall system power**
- Provides superior **end to end packet latency**, throughput and fault tolerance
- Offers **flexibility** to support evolving system configurations, even in the field

Over 6 million switches shipped
Other Defining Attributes

- Reliability
- Determinism
- Power Efficiency
- Latency
- System Topology
- Cost
RapidIO Interconnect combines the best attributes of PCIe and Ethernet in a multi-processor fabric.
Comparison

OSI Layer

Layer 1: Physical
- 10/100/100 Base-T

Layer 2: Data Link
- Ethernet

Layer 3: Network
- IP

Layer 4: Transport
- TCP
- UDP
- Custom

Layer 5+: Application
- RDMA
- Custom

Ethernet

RapidIO

Software Hardware

- Read, Write, Messaging, Datagram, Encapsulation
- Transport Layer
- Reliable Delivery
- LP-LVDS
- LP-Serial
Major Recent RapidIO News

- RapidIO based Supercomputer Launched with 2x Gflops per watt vs. top computer in Green 500
- Launch of RTA DCCN Initiative, press and EEtimes coverage
- RapidIO based data center computing presented at facebook OCP Summit Aug
- Early traction in Super Computing and Server markets, launch of Browndwarf Supercomputer with TI ARM + DSP
- IDT presents x86 Supercomputing platform at Intel Developer Forum Sep 2013
- DCCN first draft reference design presented at Open Server Summit in Santa Clara
Wireless topologies: moving to Data Center and HPC

Computing Topologies: 20 – 100 Gbps
- Micro Server
- Super computers
- Blade server
- Storage

Embedded Topologies Up to 20 Gbps
- Wireless Base Station
- Video Conferencing
- Imaging
- Mil / Aero
RapidIO 10xN Specification
RapidIO 10xN Overview

3rd Generation
Scalable embedded
peer to peer
Multi processor
Interconnect
On board, board-to-board and
Chassis to Chassis

- S-RIO 10xN: data rate of 40-160 Gbps per port
- 10.3125 Gbaud per serial lane with option of going to 12.5 Gbaud in future
- Long-reach support (100 cm through two connectors), Short Reach 20 cm 1 connector, 30 cm no connector
- Backward compatibility with RapidIO Gen2 switches (5 & 6.25 Gbps) and endpoints
- Lane widths of x1, x2, x4, x8, x16
- Speed granularity from 1.25, 2.5, 3.125, 5, 6.25, 10.3125 Gbaud

Key Additional Features
- 10 Gbps per lane
- 10 to 160 Gbps per port
- 64/67 encoding
- Power management
- Time Distribution
RapidIO 10xN to 25xN Highlights

- Builds on deployment of over 30 M 10-20 Gbps RapidIO Ports
 - > 6M switches shipped
 - exceeds 10 GbE port shipments in 2012

- 10Gbps/lane silicon development
- 25Gbps/lane next gen backplane switches

- PCIe3 NIC to RapidIO 10xN
- RapidIO Endpoint IP (10xN) for ASICs

- Large Ecosystem of software support
 - Linux, Windows, VxWorks
 - Boards and Debug Software
RapidIO 10xN Spec New Functionality

Physical Layer Enhancements
 – Electrical specifications
 – Information Encoding Scheme
 – Link Initialization
 – Ordered Sequences
 – Packet Exchange Optimizations
 – Time Distribution

Transport Layer Enhancements
 – Routing Table Programming Model
 – Add 32-bit Device IDs

Logical Layer: Unchanged

Standardization of Hot Swap Support
<table>
<thead>
<tr>
<th>Feature</th>
<th>2.X</th>
<th>10xN</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical Layer</td>
<td></td>
<td>Unchanged</td>
<td>Protect previous logical layer investment</td>
</tr>
<tr>
<td>Transport Layer</td>
<td>• 8 and 16 bit Device IDs</td>
<td>• Add 32 bit Device IDs and new routing table programming model</td>
<td>Support more device</td>
</tr>
<tr>
<td>Physical Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Widths</td>
<td>• 1, 2, 4, 8, 16 lanes</td>
<td>• Add Optional asymmetric link support</td>
<td>Save power</td>
</tr>
<tr>
<td>Lane Speeds</td>
<td>• 1.25, 2.5, 3.125, 5, 6.25 Gbaud</td>
<td>• Add 10.3125 Gbaud</td>
<td>Double the bandwidth</td>
</tr>
<tr>
<td>Electrical</td>
<td>• XAUI or OIF CEI 6 Gbaud</td>
<td>• Add IEEE 802.3 10GBASE-KR (802.3-ap, 802.3-ba)</td>
<td>Same as Ether electrical specification</td>
</tr>
<tr>
<td>Standards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encoding</td>
<td>• 8B/10B</td>
<td>• 64B/67B</td>
<td>Make encoding 20% more efficient</td>
</tr>
<tr>
<td>Information</td>
<td>• IDLE1, IDLE2</td>
<td>• Add IDLE3 and Ordered Sequences</td>
<td></td>
</tr>
<tr>
<td>Exchanged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>• Packet exchange optimization</td>
<td></td>
<td>Reduce latency during error recovery and reduce the number of control symbols sent</td>
</tr>
<tr>
<td></td>
<td>• Add Time distribution</td>
<td></td>
<td>Determine the transmission delay</td>
</tr>
<tr>
<td></td>
<td>• Standard hot swap support</td>
<td></td>
<td>Easier to support hot swap</td>
</tr>
</tbody>
</table>
RapidIO 10xN Electrical Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>10GBASE-KR (802.3ap)</th>
<th>10GBASE-KR (802.3ba)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane speed</td>
<td>10.3125 GBaud</td>
<td>10.3125 GBaud</td>
</tr>
<tr>
<td>Channel</td>
<td>10GBASE-KR channel, Annex 69A</td>
<td>Annex 83A.4, IEEE 802.3ba-2010</td>
</tr>
<tr>
<td></td>
<td>IEEE Standard 802.3-2008</td>
<td>IEEE 802.3ba-2010</td>
</tr>
<tr>
<td>PHY</td>
<td>72.6.1, 72.7.1 -72.9.5 IEEE 802.3-2008</td>
<td>Annex 83A.3 IEEE 802.3ba-2010</td>
</tr>
<tr>
<td>Reach</td>
<td>1 meter of copper PLUS 2 connectors</td>
<td>20 cm of copper PLUS 1 connector</td>
</tr>
<tr>
<td>Bit Error Rate</td>
<td>10^{-15}</td>
<td>10^{-15}</td>
</tr>
</tbody>
</table>

RapidIO 10xN is based on industry standard Ethernet electrical specifications.
10xN Information Encoding Scheme

Maintain DC Balance

“Type 0” Control Codeword

“Type 1” Data Codeword

Packets

Control Codewords

Control Symbols
10xN Packet Exchange Optimizations

<table>
<thead>
<tr>
<th></th>
<th>2.x Single Acknowledgement</th>
<th>3.0 Multiple Acknowledgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Packet Accepted</td>
<td>One Packet Accepted sent for each Packet</td>
<td>Single “Packet Accepted” can acknowledge up to XXX packets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2.x Error Recovery</th>
<th>3.0 Error Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet transmission resumes after Packet Not Accepted, Link-Request, and Link Response Control Symbols</td>
<td>Packet transmission resumes immediately after the Link Request Control Symbols.</td>
<td></td>
</tr>
</tbody>
</table>
Calibrating Transmission Delay

System Time Distribution

RapidIO Switch

System Time Master

Slave Port

Device Time

Master Port

System Time Slave

TSG Master

Send Loop-Timing Request

Process Loop-Response

Compute Loop Delay

Set Timestamp Offset

Set Slave TSG

TSG Slave

Loop-Timing Request

Loop-Response With Delay

Delay

Send Timestamp Control Symbols

Time Synchronization Protocol
Routing Table Programming Model

- Hierarchical programming model
- Supports 32, 16, and 8 bit DevIDs
- Each entry routes packets to:
 - Egress port number
 - Multicast mask number
 - Group number for next lower level
 - Use default route
 - Discard this packet
Data Center Compute and Networking

RapidIO

Multi-Processor
Embedded Interconnect

Switched | Scalable | Low Latency | Reliable

10 Gbps 20 Gbps 40 Gbps 100+ Gbps

ANY TOPOLOGY
ANY PROCESSOR
OPEN STANDARD

WIRELESS INFRASTRUCTURE | SERVER | HPEC | IMAGING | AEROSPACE | INDUSTRIAL
RapidIO Data Center Initiatives

- **Data Center Compute and Networking task group** = DCCN
- **Task group** being set up inside the RTA to drive collaborative development of RapidIO reference designs to target data center organizations:
 - OCP,
 - Scorpio,
 - Financial Data Center,
 - Super computer
- Reference designs for Compute/Motherboard and Networking/Switching
- Open Industry wide collaboration with several semiconductor, software and board/systems vendors participating
- **Goal:**
- Release Phase 1 spec’s in 2H 2013 *(draft announced at Open Server Summit)*
- Phase 1 = functionality optimized CPU agnostic compute/motherboards
- Phase 2 = performance, density, power optimized CPU agnostic compute/motherboards
CPU Agnostic RapidIO 20 Gbps Motherboards

- Compute Nodes with x86 use PCIe to S-RIO NIC
- Compute Nodes with ARM have native RapidIO endpoints
- DSP for compute intensive applications
- Up to 20 Gbps per link
- Ultra low latency
- Scales to 64k nodes
- 100 ns switch latency
- Storage solutions in development

![Diagram of CPU Agnostic RapidIO 20 Gbps Motherboards]
PHASE 1:

- Mechanical and Electrical form factors ideally useable by OCP
- Re use existing RapidIO Processor ecosystem of AMC/Daughtercards
- Base Motherboard with connectors for AMC/daugthercards
- Compute Nodes with x86 use PCIe to S-RIO NIC on Daughtercard
- Compute Node with ARM/PPC/DSP/FPGA are native RapidIO connected with small switching option on card
- DSP for compute intensive applications
- Up to 20 Gbps per link
- Small RapidIO switch per base card
- 20-40 Gbps RapidIO links to backplane and front panel for cabling
- 10 GbE added for ease of migration
- Local switching card/s will have similar form factor to Computer/Motherboards
Phase 1 Rendering

- Availability Q1 2014: Processor Agnostic Phase 1 RapidIO Motherboard
Phase 2: CPU Agnostic RapidIO 20 Gbps Motherboards

- Mechanical and Electrical form factors ideally useable by OCP
- Cost, Density, and Power Optimized
- More processing capacity per motherboard
- Remove daughtercards and connectors from phase 1
- Compute Nodes with x86 use PCIe to S-RIO NIC on motherboard
- Compute Node with ARM/PPC/DSP are native RapidIO connected with small switching option on motherboard
- Up to 20 Gbps per link
- Small RapidIO switch per base card
- 20-40 Gbps RapidIO links to backplane and front panel for cabling
- Local switching card/s will have similar form factor to Computer/Motherboards
- Interoperable with Phase 1 cards

Density, Power and Cost Optimized
20 Gbps Data Center Scaling

- Switching at board, chassis, rack and top of rack level
- Scalability to 64K nodes, roadmap to 4 billion
- Application focus
 - Latency sensitive analytics
 - Financial
 - High-Performance Computing (HPC)
- Proven in Telecom, Medical, Industrial

2x Performance per port of 10GigE top of Rack
OpenFlow Using RapidIO Fabrics
RapidIO as an OpenFlow Fabric

- RapidIO Fabric
- OPENFLOW SWITCH
- Application
- Processor
- Open Flow Switch Port/RapidIO Port
- SDN/OpenFlow Controller
- Application
- Processor
- Application
- Processor
OpenFlow Switch Platform Concept

OpenFlow Switch Box
(Communications Gateway)

OpenFlow Switch Cluster
(Data Center Applications)
Value of RapidIO for OpenFlow

- Low, deterministic latency
- Guaranteed, in order packet delivery
- QoS mechanisms support OpenFlow
- In-band, scalable, highly accurate hardware time-distribution to support timeouts
- Scales to thousands of ports in a single “logical” OpenFlow switch
- Supports fault tolerant operation
Summary

- RapidIO for Multi Processor Systems
- 3 layer protocol terminated in hardware, no TCP Offload needed
- 30 million RapidIO Ports @ 10-20 Gbps deployed
- 100ns cut through latency
- Sub microsecond end to end packet termination
- Highest Gflops per watts with Green 500 ready product launch (6.4 Gflops per watt)
- Building on Supercomputing, Servers and Data Center
- RapidIO 10xN Spec Launched, with 40 Gbps per x4 port with big power and efficiency gains over Gen2
- RTA Data Center Group kicked off to start new reference designs.
- RapidIO looking into initiative for Openflow/SDN

Thank you for joining RTA Global Design Summits Asia 2013